Cell Death and Survival Reversal of Mutant KRAS-Mediated Apoptosis Resistance by Concurrent Noxa/Bik Induction and Bcl-2/Bcl-xL Antagonism in Colon Cancer Cells
نویسندگان
چکیده
KRAS mutations are frequently detected in human colorectal cancer and contribute to de novo apoptosis resistance and ultimately therapeutic failure. To overcome KRAS-mediated apoptosis resistance, the irreversible proteasome inhibitor, carfilzomib, was evaluated and found to potently induce Noxa, which was dependent upon c-Myc, and Bik. Isogenic mutant versus wild-type KRAS carcinoma cells showed elevated Bcl-xL, confirmed by KRAS siRNA or ectopic expression. Upregulated Bcl-xL by mutant KRAS was mediated by ERK as indicated by ERK knockdown. Bcl-xL expression was regulated at the level of mRNA and protein as shown using actinomycin D and cyclohexamide, respectively. Suppression of Bcl-xL by shRNA sensitized mutant KRAS cells to carfilzomib. Concurrent Bcl-xL antagonism by the BH3 mimetic ABT-263 combined with carfilzomib synergistically enhanced apoptosis that was dependent on Bax or p53, and was attenuated by Noxa or Bik shRNA. In support of this strategy, ectopically expressed Noxa enhanced apoptosis by ABT-263. Carfilzomib-induced Noxa and Bik sequestered Mcl-1 and ABT-263 released Bik and Bak from Bcl-xL, suggesting a mechanism for drug synergy. These preclinical findings establish mutant KRAS-mediated Bcl-xL upregulation as a key mechanism of apoptosis resistance in KRASmutant colorectal cancer. Furthermore, antagonizing Bcl-xL enabled carfilzomib-induced Noxa and Bik to induce synergistic apoptosis that reversed KRAS-mediated resistance. Implications: This novel study reveals a promising treatment strategy to overcome apoptosis resistance in KRAS-mutant colorectal cancer by concurrent upregulation of Noxa/Bik and antagonism of Bcl-xL. Mol Cancer Res; 13(4); 659–69. 2014 AACR.
منابع مشابه
Reversal of Mutant KRAS-Mediated Apoptosis Resistance by Concurrent Noxa/Bik Induction and Bcl-2/Bcl-xL Antagonism in Colon Cancer Cells.
UNLABELLED KRAS mutations are frequently detected in human colorectal cancer and contribute to de novo apoptosis resistance and ultimately therapeutic failure. To overcome KRAS-mediated apoptosis resistance, the irreversible proteasome inhibitor, carfilzomib, was evaluated and found to potently induce Noxa, which was dependent upon c-Myc, and Bik. Isogenic mutant versus wild-type KRAS carcinoma...
متن کاملEffect of valproic acid on JAK/STAT pathway, SOCS1, SOCS3, Bcl-xL, c-Myc, and Mcl-1 gene expression, cell growth inhibition and apoptosis induction in human colon cancer HT29 cell line.
Background and aim: Cytokines are a large family of protein messengers. These proteins induce various cellular responses. Janus kinases (JAKs) are mediators of cytokine, activated JAKs phosphorylate signal transducers, and activators of transcription (STAT) proteins that regulate cell differentiation, proliferation, and apoptosis. Aberrant JAK/STAT signaling is involved in the oncogenesis of se...
متن کاملInduction of Noxa sensitizes human colorectal cancer cells expressing Mcl-1 to the small-molecule Bcl-2/Bcl-xL inhibitor, ABT-737.
PURPOSE The intrinsic drug resistance of colorectal cancers is related in part to overexpression of prosurvival Bcl-2 family proteins. We determined the effects of ABT-737, a small-molecule inhibitor of Bcl-2/Bcl-xL but not Mcl-1, on apoptosis induction alone and in combination with CPT-11 and explored mechanisms underlying their cooperativity. EXPERIMENTAL DESIGN Human colorectal carcinoma c...
متن کاملThe Bik BH3-only protein is induced in estrogen-starved and antiestrogen-exposed breast cancer cells and provokes apoptosis.
Evidence has been accumulating that some estrogen-dependent human breast cancers require estrogen for not only proliferation but also survival. To obtain insights into the molecular mechanisms of apoptosis of breast cancer cells subjected to estrogen starvation or exposed to antiestrogens, we characterized changes in the gene expression profile of MCF-7/BUS human breast cancer cells and reveale...
متن کاملThe Bcl-2 proteins Noxa and Bcl-xL co-ordinately regulate oxidative stress-induced apoptosis.
Because the detailed molecular mechanisms by which oxidative stress induces apoptosis are not completely known, we investigated how the complex Bcl-2 protein network might regulate oxidative stress-induced apoptosis. Using MEFs (mouse embryonic fibroblasts), we found that the endogenous anti-apoptotic Bcl-2 protein Bcl-xL prevented apoptosis initiated by H(2)O(2). The BH3 (Bcl-2 homology 3)-onl...
متن کامل